REGULARIZATION IN THE REDUCTION OF THE HEAT
FLUX TO THE SURFACE OF A BODY WITH
NONLINEAR CONDUCTION
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The surface heat flux may be deduced from the time course of the temperature within a body.

Often the only way to measure the heat flux into a material is to measure the temperature within the
material,

Small errors in the measured temperatures may represent very large errors in the calculated heat
flux; for instance, the body largely fails to respond to high-frequency fluctuations in the heat flux, so
minor errors 6meas in the observed temperature may be considered as consequences of fast alternating
flux components of arbitrarily large amplitude, Therefore, the problem is to be considered as incorrectly
formulated unless additional information is available; a stable solution may not be attained if the input
data are perturbed.

An efficient method of constructing a stable approximation for such cases is based on qualitative a
priori information [3-5, 8] (regularization). Inparticular, surface-temperature determination has been
considered [1] for the case where the thermal characteristics of the body are independent of temperature,

We consider the propagation of heat ina rod (0, R) with an adiabatic side surface and adiabatic
right-hand end where the physical parameters are dependent on temperature:
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where q(r) is the heat flux supplied to the left~hand end, A{t) = A > 0, cft) = ¢ > 0, ty{x), A{t), and c{t) may
be taken as a known smooth function of the argument,

If, for example, q(r) is known, then {1) is completely defined, and the temperature can be caleulated
for any specified point %y onthe rod (0 = x; = R); then we have defined the operator Afq] = t(x, r), where
t{x;, 7) is the temperature at point x,.

We are here interested in the problem inverse to (1), namely, determination of q(r) subject to addi-
tional specification of t(r) at point %y, which is accessible to measurement, This differs from the treat-
ment of [1] in that the operator A[q] is nonlinear and correspondingly does not have an explicit analytical
representation; this can be considered as an extrapolation problem (since we know also the value
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9t/0xix =R = 0), and then it is readily shown that the solution q is unique when t_meas is exactly given,
The attempt to invert (1) directly is equivalent to solving the equation
timeas—'A [q1 = 0. @

The problem of (2) is nonlinear in this formulation, since the coefficients in the equation are depen-
dent on temperature, while the operator Alq} is given inexplicitly (an algorithm).

The algorithm of [3-6] is reasonably general and applicable to nonlinear inverse problems; the per-
formance of the algorithm is unrelated to the requirement for explicit specifieation of Alq], or, in other
words, one does not need to reduce the problem to an integral equation of the first kind.

It is thus possible to use the above general algorithm, in particular, in the nonlinear theory of ther-
mal conduction, where a difference from [1] is that the Green's function does not allow of analytical rep-
resentation. Quasiinversion [2] differs from regularization in not requiring, in general, that the approxi-
mation converges to the exact solution for dmeas — 0.

Consider the functional
F* (gl = A [q] —tmeasP + lg'P | )

and the determination of g2 that produces the minimum; it is clear that q% is the solution to (2) for a =0
if tmeag is exactly specified, while for o > 0 it represents the solution to some smooth problem, which is
meaningful for any tmeag and is stable with respect to 6meas.

Roughly speaking, for allq that satisfy | A[q] = tyneqsll < Omeas One should select the smoothest as the
solution; then the error arising from the smoothing term aliq'll? should be of the order of the error of
measurement, i.e., o = Mé%neas) [4]. Smoothness in the solution is the qualitative information used here,
We minimize F% [q] via an iterative sequence of turning points in quadratic functionals:

Fr ] = A1+ 47 102 Gy — ) —Fmeas” + @ lusil’, )
where A('l[q] is the operator derivative and q, may be specified largely arbitrarily.

The following choice of o is used: one specifies the sequence {ap, Q41 = HOp, P <1}, with @,
fairly large, and from {q®p] we select the solution q* that realizes minliq*p — q®P~1ll; then o, = and
q“ is the required approximate flux. The initial value q, for o = a4 i taken as equal to q*P, while
for p = 0 we take qy = 0, which provides for convergence in the iteration of ).

In the numerical realization, the tmeas, 4, q', and A[q] were replaced by the usual grid analogs [7]
on the grid {xj =  +1/2)hy, 7j=jhr}, 0=i=N, 0=j =DM, hgy =R/N, hy =T/M, the choice not being
of major importance.

The operator derivative A}l[q] was approximated by a Jacobi matrix, as in [8]; columnk is

Alg () + A8zl —Alg ()]
A

where 6k is the Kronecker symbol and A is the increment in component k of g.

As A[q] has to be determined repeatedly in order to construct the Jacobi matrix, machine-time
economy is necessary in the grid analog for Alq].

The algorithm has been tested on a model involving recovery of the heat flux at the end of a rod of
length R = 5 mm for the interval 0, T = 5 sec with the following temperature dependence of the factors:
Ak) = 0.75-107% keal/m - sec +deg® X t, c(t) = 60 keal/m®-deg — 2.20 kecal/m? -deg? x t, which means that
At)/ctt) varies by over a factor 2. Errors in the input data of 2 and 0.02%, respectively, gave errors of

"4 and 0.2% in the recovery. )

The algorithm may thus be used for calculating actual heat fluxes,

NOTATION

t, temperature; q, heat flux; A, ¢, thermal conductivity and specific heat; dmeas, error of tem-
perature measurement; A, direct solution operator; a, regularization parameter,
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