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The su r face  heat flux may  be deduced f r o m  the t ime  cou r se  of the t e m p e r a t u r e  within a body. 

Often the only way to m e a s u r e  the heat  flux into a m a t e r i a l  is to m e a s u r e  the t e m p e r a t u r e  within the 
m a t e r i a l .  

Small  e r r o r s  in the m e a s u r e d  t e m p e r a t u r e s  may r e p r e s e n t  v e r y  l a rge  e r r o r s  in the calcula ted heat  
flux; for ins tance ,  the body l a rge ly  fai ls  to respond  to h igh- f requency  fluctuations in the heat  flux, so  
minor  e r r o r s  5meas  in the obse rved  t e m p e r a t u r e  may be cons idered  as  consequences  of fas t  a l t e rna t ing  
flux components  of a r b i t r a r i l y  l a rge  ampl i tude .  The re fo re ,  the p r o b l e m  is  to  be  cons idered  as  i n c o r r e c t l y  
fo rmula ted  unless  addit ional in fo rmat ion  is avai lable ;  a s tab le  solut ion may  not be at ta ined if the input 
data  a r e  pe r tu rbed .  

An efficient  method of cons t ruc t ing  a s table  approx imat ion  for  such cases  is based  on qual i ta t ive a 
p r i o r i  in format ion  [3-5, 8] ( regular izat ion) .  In pa r t i cu la r ,  s u r f a c e - t e m p e r a t u r e  de te rmina t ion  has been  
cons idered  [1] for  the case  where  the t h e r m a l  c h a r a c t e r i s t i c s  of the body a r e  independent of t e m p e r a t u r e .  

We cons ider  the propaga t ion  of heat  in a rod (0, R) with an  ad iaba t ic  s ide  su r f ace  and adiabat ic  
r igh t -hand  end where  the physica l  p a r a m e t e r s  a r e  dependent on t e m p e r a t u r e :  

- -  = c (t) O---~- ' 
8x 

t(x,  O) = fo(x), O . < z < T ,  O < x < : R , .  
(1) 

at = 
o, 

at i. 
~" r  -~x I==o = q (.r), 

where q(T) is the heat flux supplied to the le~-har~t end, ~ ( t )  ~ A > 0 ,  c r  ~ e > 0 ,  t 0 ( x )  , kit), and c(t) may 
be  t aken  as  a known smooth function of the a rgumen t .  

If, for  example ,  q(r) is known, then (1) is comple te ly  defined, and the t e m p e r a t u r e  can  be calculated 
for  any speci f ied  point x I o n t h e  rod (0 -< x1 <-- R); then we have defined the ope ra to r  A[q] ~ t(xl, r) ,  where  
t(xl,  T) is the t e m p e r a t u r e  at point xi .  

We a r e  h e r e  in te res ted  in the p r o b l e m  inve r se  to (1), namely,  de te rmina t ion  of q(r) subjec t  to  addi-  
t ional  spec i f ica t ion  of t(T) at point xl, which is a c c e s s i b l e  to  m e a s u r e m e n t .  This  d i f fers  f r o m  the t r e a t -  
ment  of [1] in that the ope ra to r  A[q] is nonlinear  and cor respondingly  does not have an explici t  analyt ica l  
r ep re sen ta t ion ;  this can be cons ide red  as an ext rapola t ion  p rob lem (since we know a lso  the value 
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3t/~xix= R = 0), and then it is readi ly shown that the solution q is unique when tmeas  is exactly given. 

The attempt to invert  (1) direct ly  is equivalent to solving the equation 

~mea~-A [q] = 0. (2) 

The problem of (2) is nonlinear in this formulation, since the coefficients in the equation a re  depen- 
dent on tempera ture ,  while the operator  A [q] is given inexplicitly (an algori thm).  

The algori thm of [3-6] is reasonably  genera l  and applicable to nonlinear inverse  problems;  the pe r -  
formance of the a lgor i thm is unrelated to the requi rement  for explicit specif icat ion of A [q], or,  in other 
words,  one does not need to reduce the problem to an integral  equation of the f i rs t  kind. 

It is thus possible to use the above general  a lgori thm, in par t icular ,  in the nonlinear theory  of the r -  
mal conduction, where a difference f rom [1] is that the Green ' s  function does not allow of analytical  r ep -  
resentat ion.  Quasi inversion [2] differs f rom regular iza t ion  in not requir ing,  in general ,  that the approxi-  
mation converges to the exact solution for 5meas -~ 0. 

Consider  the functional 

F ~ [q] ~ ]]A [q] --tmeas [~ + r [lq'[[ z (3) 

and the determinat ion of q~ that produces the minimum; it is c lear  that q~ is the solution to (2) for c~ = 0 
if tmeas  is exactly specified, while for ce > 0 it r ep resen t s  the solution to some smooth problem, which is 
meaningful for any tmeas and is stable with respec t  to 6meas.  

Roughly speaking, for a l lq  that sat isfy II A[q] - tmeas[l < 5meas  one should select  the smoothest  as the 
solution; then the e r r o r  ar is ing f rom the smoothing t e r m  ~ II q' II 2 should be of the order  of the e r r o r  of 
measurement ,  i . e . ,  ~ = 0(52meas ) [4]. Smoothness in the solution is the qualitative information used here .  
We minimize F ~ [q] via an i terat ive sequence of turning points in quadrat ic  functionals : 

F~ [qn+l] = IIA [qn]~+ A~ [qn] (qn+l --q~) --tmeasJ 2 + a ~q~ll', (4) 

where A~[q] is the operator  derivat ive and q0 may be specified largely a rb i t ra r i ly .  

The following choice of ~ is used:  one specif ies the sequence {~p, c o +  l = /~p ,  /~ < 1}, with e 0 
fa i r ly  large,  and f rom {q~p} we select  the solution q~ that rea l izes  rain ]lq~P -- q~p-lll; then s o = ~ and 

. . . . . . .  C~ ~ �9 

q is the r eqmred  apprommate  flux. The lmtlal  value q0 for ~ = ~ p +l is taken as equal to q P, whlle 
for p = 0 we take q0 - 0, which provides for convergence in the i tera t ion of (4). 

In the numerica l  real izat ion,  the tmeas ,  q, q ' ,  and A[q] were replaced by the usual grid analogs [7] 
on the gr id  {xi = ( i + l / 2 ) h  x, rj = j h r } ,  0 - < i < -  N, 0 - j - < -  M, h x = R / N ,  h r = T / M ,  the choice not being 
of major  impor tance .  

The operator  derivat ive A~[q] was approximated by a daeobi matr ix ,  as in [8]; column k is 

A [q (1) + A6~k] - -  A [q (])] 
A 

where 5jk is the Kronecker  symbol and A is the increment  in component k of q. 

As A [q] has to be determined repeatedly in order  to const ruct  the Jacobi matr ix ,  machine- t ime 
economy is neces sa ry  in the grid analog for A [q]. 

The a lgor i thm has been tested on a model involving r ecove ry  of the heat flux at the end of a rod of 
length R = 5 mm for the interval  0 '  T = 5 see with the following t empera tu re  dependence of the fac tors :  
X (t) = 0 .75.10 -6 k e a l / m ,  sec .deg 2 • t,  e(t) = 60 kea l /m  3 .deg -- 2.20 k e a l / m  3 .deg 2 x t, which means that 
hqc)/e~) var ies  by over a fac tor  2. E r r o r s  i n t h e  input data of 2 and 0.02%, respect ively ,  gave e r r o r s  of 

�9 4 and 0.2% in the r ecovery .  

The a lgor i thm may thus be used for  calculating actual  heat fluxes. 

NOTATION 

t, temperature; q, heat flux; h, e, thermal conductivity and specific heat; 6meas, er ror  of tem- 
perature measurement; A, direct solution operator; a, regularization parameter. 
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